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Monte Carlo simulations and analytical results are used to demonstrate that the

hexagonal close-packed (h.c.p.) pair correlation functions for different values of

randomly distributed growth and deformation faults can be collapsed into

master curves when plotted against a spatial variable, scaled with respect to a

characteristic length (L). The functional dependences of L on different types of

faults are found to be non-universal. A simple method for the determination of

L from the measured intensity distributions is also outlined.

1. Introduction

Stacking faults are commonly observed in several types of

layered materials such as SiC, ZnS, CdI2, micas, Co and its

alloys, close-packed martensite phases of copper-based alloys

and alkali metals, hexagonal C70 etc. (Pandey & Krishna, 1982;

Berliner et al., 1989, 1992; Blanc et al., 1996). Stacking faults

introduced during plastic deformation of metals are

commonly called deformation faults which result from the

shearing of one part of a crystal past another across close-

packed planes (Warren, 1969). The faults which result from

accidental mistakes during crystal growth are termed growth

faults (Pandey & Krishna, 1982). During irradiation of metals

and alloys, extrinsic faults involving precipitation of vacancies

are commonly observed (Hirth & Lothe, 1968). All these types

of faults are usually distributed randomly. However, when

faults are introduced during phase transformations between

two close-packed or layered structures, the distribution no

longer remains random but instead becomes non-random as

was first noted in the context of 2H to 6H transformation in

SiC involving layer displacement faults (Pandey et al.,

1980a,b,c).

The first systematic treatment of diffraction from faulted

close-packed structures was given by Wilson (1942) and

Hendricks & Teller (1942). Since then, several workers have

developed theories of diffraction from various close-packed

structures containing different geometrical types of randomly

as well as non-randomly distributed stacking faults (Wilson,

1962; Warren, 1969; Pandey & Krishna, 1992). Use of Monte

Carlo techniques leads to the same results as those obtained

by analytical treatment for random distribution of stacking

faults (Berliner & Werner, 1986). However, for non-random

distribution of faults, the Monte Carlo results have been

shown to be different from those obtained analytically using

the difference equation approach especially for large fault

probabilities � (Kabra & Pandey, 1995, 1996; Shreshtha et al.,

1996). The main difference between the analytical and Monte

Carlo approaches is that the latter leads to the arrest of the

transformation for an intermediate value of non-random fault

probability � less than the value of unity required for

completion of the transformation. Kabra & Pandey (1988) and

subsequently Shreshtha & Pandey (1996, 1997) have also used

one-dimensional kinetic Ising models based on Glauber and

Kawasaki dynamics to study the 2H to 6H and 2H to 3C

transformations. These models predict arrest of transforma-

tion for the Kawasaki dynamics (which represents insertion of

layer displacement faults) only and not for Glauber dynamics

(which corresponds to the insertion of deformation faults). In

the Monte Carlo approach, Fourier transform of the ensemble

averaged pair correlation functions, calculated numerically

using simulated sequences of close-packed layers generated by

a specific algorithm, directly gives the intensity distribution for

faulted structures. The Monte Carlo technique is fairly general

and can handle mixtures of stacking faults of all types in all

concentrations, in contrast to the analytical techniques which

are usually intractable for large fault probabilities and also for

mixed faulting.

In addition to the fault model approach, it is also possible to

describe a faulted crystal without specifying the nature and

geometry of stacking faults explicitly and carry out the

calculation of diffracted intensity in the manner described by

various workers (Zachariasen, 1947; Farkas-Jahnke, 1973;

Estevez-Rams et al., 2001; Varn et al., 2002). By Fourier

inversion of the observed intensity distribution along diffuse

streaks, one can obtain the relevant pair correlation functions

which carry information about the different types of stacking

faults present in a particular crystal (Estevez-Rams et al., 2001;

Estevez-Rams, Leoni et al., 2003; Estevez-Rams, Aragon-

Fernandez et al., 2003). However, the task of extracting the

faulted stacking sequence from the pair correlation functions

is formidable, unless the stacking-fault model is known. Thus

the practical utility of the so called ‘direct’ methods, advanced

in recent years, is somewhat limited. This limitation is similar

to the problem of determining the correct crystal structure



from the Patterson function (which is the same as the pair

correlation) for ordered structures (Warren, 1969). Attempts

to fit the observed intensity distributions, such as those

recently given by Varn et al. (2002), without taking care of

convolution effects (Pandey et al., 1986) and beam-divergence

effects (Pandey et al., 1987) present in the experimental

profiles have little meaning in a quantitative sense.

In the Monte Carlo simulation for non-random faulting

using kinetic Ising models, Shreshtha & Pandey (1996, 1997)

and Shreshtha et al. (1996) demonstrated that the pair corre-

lation functions P(m), Q(m) and R(m) can be described by

exponentially varying functions like exp(�m/L), where L is a

characteristic length scale. This type of exponentially varying

function has subsequently been used by Estevez-Rams, Leoni

et al. (2003) in the context of random growth and deformation

faults in face-centred cubic (f.c.c.) crystals. Shreshtha &

Pandey (1996, 1997) have also demonstrated the scaling

behaviour of the pair correlation functions in the time domain

for Glauber dynamics (non-random deformation faults). In

the present work, we have performed Monte Carlo simula-

tions for random distributions of growth and deformation

faults as well as their mixtures in h.c.p. crystals to demonstrate

that the scaling behaviour holds true in the fault probability

domain also. We also show that the characteristic length scale

L used in scaling can be described by polynomials of second or

higher order in fault probabilities. The dependence of the

characteristic length scale on fault probabilities as obtained by

simulations is shown to be in good agreement with those

derived analytically. The exact relationship between the

characteristic length scale and the full width at half-maximum

of the diffuse peaks is also presented.

2. Basic diffraction equations for h.c.p. crystal with
random growth and deformation faults

Consider a stack of N close-packed layers numbered as j = 0 to

N � 1. The resulted diffracted intensity, I, from such a stack of

layers can be written as (Shreshtha & Pandey, 1996)

I ¼ ð1=NÞ

þ 2
X1
m¼1

N �m

N2

�
fPðmÞ þ ½QðmÞ þ RðmÞ� cosð�Þg cosðm’Þ

þ ½QðmÞ � RðmÞ� sinð�Þ sinðm’Þ
�
; ð1Þ

where � = �h3, h3 being a continuous variable along c�, � =

2�(H � K)/3, and P(m), Q(m) and R(m) are the pair corre-

lation functions defined as the probabilities of finding A–A,

B–B, C–C; A–B, B–C, C–A; and A–C, B–A, C–B type pairs of

layers with m layer separations, such that

PðmÞ þQðmÞ þ RðmÞ ¼ 1 ð2Þ

and

QðmÞ ¼ RðmÞ: ð3Þ

Using the earlier formulation of Pandey & Krishna (1977),

P(m) for h.c.p. crystal containing random growth and defor-

mation faults can be written as

PðmÞ ¼ 2=3½1=2þ c0�
m
0 þ ce�

m
e �; ð4Þ

where the constants ce, co, �e and �o are functions of the

growth (�) and deformation (�) fault probabilities as given

below:

�e ¼ 1=2ð�� xÞ; ð5Þ

�o ¼ �1=2ð�þ xÞ; ð6Þ

ce ¼ 1=2½1� ð1� �Þ=x� ð7Þ

and

co ¼ 1=2½1þ ð1� �Þ=x�; ð8Þ

where

x ¼ f�� 4ð1� �Þ � 2½ð3� 4�Þð1� �Þ�1=2
g

�
� f�� 4ð1� �Þ þ ½ð3� 4�Þð1� �Þ�1=2

g
�1=2

ð9Þ

and

� ¼ 3�ð1� �Þ: ð10Þ

The quantities ce, co, �e and �o will be real or imaginary

depending on the value of x. Two cases arise:

case 1: 0<�< 4ð1� �Þ � 2½ð3� 4�Þð1� �Þ�1=2

case 2: 4ð1� �Þ � 2½ð3� 4�Þð1� �Þ�1=2 <�< 1:

For case 1, f�� 4ð1� �Þ þ 2½ð3� 4�Þð1� �Þ�1=2g is negative

and hence x will be a real quantity. For case 2,

f�� 4ð1� �Þ þ 2½ð3� 4�Þð1� �Þ�1=2g is positive so that x

becomes an imaginary quantity. Thus, for case 1, ce, co, �e

and �o are real quantities, while, for case 2, ce, co, �e and �o

are all complex quantities. It can be shown easily that, for

case 1, the average structure remains h.c.p.-like, whereas, for

case 2, it becomes f.c.c.-like. These two cases are elucidated

through regions A and B in Fig. 1, which is a plot of

4ð1� �Þ þ 2½ð3� 4�Þð1� �Þ�1=2 versus �. Case 1 will be

applicable for combinations of fault probabilities � and � such

that the relevant region in Fig. 1 is A; likewise for case 2. We

shall now examine the scaling properties of the pair correla-

tion function P(m) for pure growth faulting, pure deformation

faulting and mixed faulting separately.
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Figure 1
Demarcation of h.c.p.-like regions (A) and f.c.c.-like regions (B).



3. Scaling behaviour of pair correlation functions for
faulted h.c.p. crystals

For Monte Carlo simulations, we start with an ensemble of

layers arranged in the perfect h.c.p. manner (i.e.

ABABAB . . . ) and numbered 1 to 10000. Faults were intro-

duced in this stack of layers using a pseudo-random-number

generator in the interval [1, 10000]. Various layers in this stack

were selected for faulting using the integer pseudo-random

numbers. After the desired number of layers had been faulted,

the pair correlation functions, P(m), Q(m) and R(m), were

computed for this ensemble. It was found that averaging over

60 such ensembles smooths out any statistical fluctuations in

the variation of the correlation functions with the spatial

coordinate m.

3.1. Random deformation faults

For the insertion of deformation faults in the Monte Carlo

scheme, the layers succeeding each randomly selected layer

were shifted in cyclic (A! B, B!C, C!A) or anti-cyclic

(A!C, B!A, C!B) manner, taking into account the

consideration that no two successive layers should be alike.

Every such site was blocked for further faulting. The number

of faults to be inserted was decided by the deformation fault

probability � (0 < � < 1). The variation of P(m) with m for

various values of deformation fault probabilities � is shown in

Figs. 2(a) and 2(b). It is evident from this figure that P(m) for

m even decreases exponentially with increasing m, while it

increases exponentially for m odd. The following exponential

functions describe the dependence of P(m) on m (Shreshtha &

Pandey, 1996):

PðmÞ ¼ 1=3þ ð2=3Þ expð�m=LÞ; for m even; ð11Þ

and

PðmÞ ¼ 1=3� ð1=3Þ expð�m=LÞ; for m odd: ð12Þ

Here, L is a characteristic length scale which may be deter-

mined by least-squares fitting of equations (11) or (12) to the

numerical values of P(m). The variation of the characteristic

length scale L so obtained with � is shown in Fig. 3(a). The

shortest correlation length for random deformation faults

occurs at � = 0.5. For � > 0.5, the correlation length again starts

increasing and, at � = 1, the ABABAB . . . stacking sequence

becomes ACACAC . . . , which is equivalent to the initial

sequence with a shift of origin. The decay and growth of

correlation length for � < 0.5 and � > 0.5 are demonstrated in

Fig. 3(a).

Following Shreshtha & Pandey (1996), we define correla-

tion length � as the value of m beyond which P(m) ’ 1/3. The

physical significance of this is that the probability of finding

A-, B- or C-type layers at a separation of m layers becomes

equal (i.e. �1/3) for m � �. This in turn implies that, for m > �,
there is no correlation between the pairs of close-packed

layers. It may be mentioned that this property of convergence
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Figure 2
Variation of the pair correlation function P(m) with the layer separation
(m), for different values of the deformation fault probability �: (a) 0.05
and (b) 0.2; for different values of the growth fault probability �: (c) 0.1
and (d) 0.9; for mixed faulting with a fixed growth fault probability � = 0.1
and variable deformation fault probability �: (e) 0.05 and ( f ) 0.2.

Figure 3
Variation of (a) the characteristic length scale (L) and (b) expð�1=LÞ
with the deformation fault probability �. Analytical results are denoted
by empty circles while simulation results are denoted by the continuous
curve.



of P(m) to 1/3 is not universal; the exception being layer

displacement faults in h.c.p. crystals which always retain long-

range correlations (Sato, 1969; Pandey et al., 1980a; Kabra &

Pandey, 1995). The characteristic length scale (L) given by

equations (11) and (12) is slightly less than the correlation

length � as it corresponds to the value of m for which

exp(�m/L) becomes 1/e. However, it bears one-to-one

correspondence with �, and is mathematically determinable

unambiguously.

Instead of plotting P(m) against m for various values of � as

shown in Fig. 2, if we now plot P(m) against a scaled variable

m/L, all possible variations of P(m) with m for various values

of the fault probability, 0 < � < 0.5, collapse into two master

curves, one corresponding to the decay part and the other

corresponding to the growth part. This is shown in Fig. 4 for

� = 0.1, 0.2, 0.3 and 0.4 for the decay part only. Such a collapse

of pair correlation functions into a master curve confirms the

scaling property of P(m) [as also of Q(m) and R(m)] for

random deformation faults.

3.2. Random growth faults

For the insertion of growth faults, the orientations of each

randomly selected layer and the subsequent alternate layers

were changed cyclically or anti-cyclically keeping in mind the

constraint that no two successive layers can be in the same

orientation. The chosen site was blocked for further faulting.

As is evident from Fig. 1, it is necessary to consider the results

of simulation for the two ranges of � < 0.536 and � > 0.536

separately.

The variation of P(m) with m for various values of growth

fault probabilities (�) is shown in Figs. 2(c) and 2(d). The

characteristic length scales (L) for different growth prob-

abilities in the range 0 < � < 0.536 were obtained by least-

squares fitting using equation (11). The variation of L with � is

shown in Fig. 5(a). For the range 0.536 < � < 1, f.c.c. correla-

tions start emerging, as can be seen from Fig. 2(d), and the

functional forms given by equations (11) and (12) need to be

modified as under
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Figure 4
Variation of the decay part of P(m) with scaled variable m/L for different
deformation fault probabilities �, denoted by different symbols,
exhibiting collapse of the entire data on a single master curve.

Figure 5
Variation of (a) the characteristic length scale (L), and (b) expð�1=LÞ
with the growth fault probability � for the range 0 < � < 0.536. Analytical
results are denoted by empty circles while simulation results are denoted
by the continuous curve.

Figure 6
Variation of (a) the characteristic length scale (L) and (b) expð�1=LÞ
with the growth fault probability � for the range 0.536 < � < 1. Analytical
results are denoted by empty circles while simulation results are denoted
by the continuous curve.



PðmÞ ¼ 1=3þ ð2=3Þ expð�m=LÞ; for m ¼ 0 mod 3; ð13Þ

and

PðmÞ ¼ 1=3� ð1=3Þ expð�m=LÞ; for m ¼ 1; 2 mod 3: ð14Þ

The variation of the characteristic length scale L with � for

this range of values is shown in Fig. 6(a).

It is found that for both ranges of values of �, i.e. 0 � � <

0.536 and 0.536 < � � 1, the values of P(m) can be collapsed

into master curves on plotting P(m) against m/L, as shown in

Figs. 7(a) and 7(b) for the decay part of P(m) for the two

ranges of values of �. These collapses confirm the scaling

property of the pair correlation functions for h.c.p. crystals

with random growth faults for all values of the fault prob-

ability.

3.3. Mixed random growth and random deformation faults

We now consider a mixture of growth and deformation

faults. For simulations, we have fixed the growth fault prob-

ability at � = 0.1 and vary � in the range 0 to 1.

For mixed faulting, we first introduce growth faults in a

stack of 10000 layers, as per the Monte Carlo scheme outlined

in x3.2. Deformation faults were introduced in this growth

faulted stack of layers. The variation of P(m) with m for � =

0.1 and 0 < � < 1 is shown in Figs. 2(e) and 2( f). Fig. 8(a) shows

the variation of the characteristic length scale L with �. For

� < 0.4, the h.c.p. characteristic length scale decreases with

increasing � but the trend is reversed for � > 0.4. This case is to

be contrasted with that of pure deformation faulting where the

reversal of the trend of the L versus � plot occurred at �	 0.5.

When we plot P(m) against the scaled variable m/L, the

values of P(m) collapse into two master curves corresponding

to the decay and growth parts of P(m) for the range of

deformation fault probability, 0� � < 0.4. This is shown in Fig.

9 for the decay part. Similar collapses occur for � > 0.4. This

confirms the scaling behaviour of pair correlation functions for

mixed random faulting also.

4. Comparison of simulation results with analytical
results

In this section, we shall consider the determination of the

characteristic length scales for the three cases considered in

the previous sections using the analytical treatment given in

x2. Using equations (4)–(10), the general analytical expression

for P(m) can be written as

PðmÞ ¼ 1=3 1þ 1þ
1� �

x

� �
cosðm�Þ

�
�þ x

2

�m�

þ 1�
1� �

x

� �
cosðm�Þ

�
�� x

2

�m�
: ð15Þ

On comparing the above equation with equation (11), we

obtain
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Figure 8
Variation of (a) the characteristic length scale (L) and (b) expð�1=LÞ
with the deformation fault probability �. Analytical results are denoted
by empty circles while simulation results are denoted by the continuous
curve. These results are for mixed faulting with a fixed growth fault
probability � = 0.1 and variable deformation fault probability �.

Figure 7
Variation of decay part of P(m) with scaled variable m/L for different
growth fault probabilities �, denoted by different symbols, exhibiting
collapse of the entire data on a single master curve for case (a) 0 < � <
0.536 and (b) 0.536 < � < 1.



1
2

��
1þ

1� �

x

��
�þ x

2

�m

þ

�
1�

1� �

x

��
�� x

2

�m�

¼ expð�m=LÞ: ð16Þ

Equation (16) describes an exact relationship between the

fault probabilities and the characteristic length scale. This

equation is analytically intractable in its most general form.

We consider special cases for its solution.

4.1. Random deformation faults

For pure deformation faulting, an exact relationship

between L and � exists, as given below on the basis of equa-

tion (16) by putting � = 0:

expð�2=LÞ ¼ 3�2 � 3�þ 1: ð17Þ

The functional dependence of L on � given by equation (17) is

in excellent agreement with that obtained by simulation. This

can be seen from Fig. 3(b) where the function expð�1=LÞ is

plotted against the variable � using equation (17).

4.2. Random growth faults

In the case of pure growth faulting with � in the range

0 < � < 1, we consider the two cases for 0 < � < 0.536 and

0.536 < � < 1 separately, as explained earlier. For the range

0 < � < 0.536, equation (16) is analytically intractable, but it

can be solved numerically.

The variation of expð�1=LÞ with � so obtained from

numerical solution of equation (16) is in good agreement with

that obtained by simulation as can be seen from Fig. 5(b). The

small departure between the two sets of values for � > 0.3 is

due to the rounding-off of L to the nearest integer. This

introduces rounding-off errors, which are especially significant

for small L. Numerically, L can take any value, integer or non-

integer, but only the integer values of L are physically rele-

vant.

The case 0.536 < � < 1 corresponds to region B in Fig. 1, i.e.

4ð1� �Þ � 2½ð3� 4�Þð1� �Þ�1=2 <�< 1. �e and �o are now

complex quantities, which may be defined as

�e ¼ 1=2ð��þ iyÞ ¼ �Z expð�i�Þ; ð18Þ

�o ¼ �1=2ð�þ iyÞ ¼ �Z expði�Þ; ð19Þ

where

Z ¼ 1=2ð�2 þ y2Þ; ð20Þ

� ¼ tan�1
ðy=�Þ ð21Þ

and

y ¼ �ix

¼ f4ð1� �Þ þ 2½ð3� 4�Þð1� �Þ�1=2
� �g

�
� f�� 4ð1� �Þ þ 2½ð3� 4�Þð1� �Þ�1=2g

�
1=2: ð22Þ

Thus,

Z ¼ 2ð2�� 1Þð1� �Þ: ð23Þ

The constants co and ce are now given by

ce ¼ 1=2½1þ ið1� �Þ=y� ð24Þ

and

co ¼ 1=2½1� ið1� �Þ=y�: ð25Þ

Using equations (18), (19), (24) and (25), we get

PðmÞ ¼ 1=3þ 4=3½cr cosðm�Þ cosðm�Þ

þ ci sinðm�Þ cosðm�Þ�ðZÞm: ð26Þ

On comparing equation (26) with equation (11), we get

expð�1=LÞ ¼ ð2�� 1Þ½1� 3�ð1� �Þ�: ð27Þ

Putting � = 0, we obtain for pure growth faulting

expð�1=LÞ ¼ ð2�� 1Þ: ð28Þ

It is interesting to note that equation (27) gives the exact

relationship between L and �, � for region B of Fig. 1. The

values for the characteristic length scale obtained by equation

(28) are compared with their simulation counterparts in Fig.

6(b), which shows a reasonable agreement between the two

for 0.536 < � � 0.7. For � > 0.7, the simulation values are

slightly less than the analytical results due to the rounding-off

errors.

4.3. Mixed random growth and random deformation faults

For mixed faulting, since equation (16) is analytically

intractable, we first obtain P(m) versus m plots for different

combinations of � and � numerically. We then fit equation (11)

to these values to obtain the correponding L values. The

values of L so obtained for � = 0.1 and 0 < � < 1 are compared

with the simulation values in Fig. 8(b), which shows a good

match.
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Figure 9
Variation of decay part of P(m) with scaled variable m/L for different
deformation fault probabilities, denoted by different symbols, exhibiting
collapse of the entire data on a single master curve. These results are for
mixed faulting with a fixed growth fault probability � = 0.1 and variable
deformation fault probability �.



5. Calculation of intensity distribution for faulted h.c.p.
crystals

We have already seen that, for growth and deformation as well

as for mixed faulting, P(m) exhibits scaling properties. The

collapse (or scaling) of P(m) into master curves implies that

the characteristic length scale L contains all the relevant

information about the evolution of the faulted sequences. We

can make use of this fact to express I(h3) solely as a function of

the characteristic length scale L. Using equations (11) and

(12), we performed the summation in equation (1) for an

infinite size crystal (N >> m) and obtained the following

expression for region A of Fig. 1, i.e. for the h.c.p.-like region:

Iðh3Þ ¼
1� �2

N

1� � cosð�h3Þ þ �
2

1� 2�2 cosð2�h3Þ þ �
4
;

where � ¼ exp½�1=Lð�Þ�: ð29Þ

For region B of Fig. 1, we use equations (13) and (14) and

perform the summation in equation (1) to get the following

expression, which has previously been derived by Shreshtha &

Pandey (1996) in a different context:

Iðh3Þ ¼
3 1� �3 cosð3�h3Þ
	 


N½1� 2�3 cosð3�h3Þ þ �
6�

�
1� � cosð�h3Þ
	 


N½1� 2� cosð�h3Þ þ �
2�
�

1

N
: ð30Þ

The intensity distributions obtained using equations (29) and

(30) are shown in Fig. 10 for various cases of random defor-

mation faulting, growth faulting and mixed faulting.

The following exact expression for the full width at half-

maximum (FWHM) of the h.c.p. reflections with h3 = 0 mod 2

and h3 = 
1 mod 2 can be obtained from equation (29) for

case 1 of x2 (region A of Fig. 1):

FWHM ¼
2

�
cos�1 ½1� 8Mð1þ �2Þ þ 4M2ð1þ �2Þ2�1=2

8M�

� �
;

ð31Þ

where the quantity M corresponds to the peak value of the

diffracted intensity:

M ¼
1� �þ �2

1� 2�2 þ �4
for h3 ¼ 0 mod 2; ð32Þ

M ¼
1þ �þ �2

1� 2�2 þ �4
for h3 ¼ 
1 mod 2: ð33Þ

For the f.c.c. reflections with h3 = 
2/3 mod 2, the following

exact expression for the FWHM can be obtained from equa-

tion (30) for case 2 of x2 (region B of Fig. 1):

FWHM ¼
2

3�
cos�1 M�6 þM � 6

2ðM � 3Þ�3

� �
; ð34Þ

where

M ¼
3ð1� �3Þ

ð1� 2�3 þ �6Þ
for h3 ¼ 
2=3 mod 2: ð35Þ

Thus the value of �, and hence L, may be determined from the

FWHM of the broadened peaks in the observed intensity

profiles. It can also be determined from the pair correlation

functions obtained after the Fourier inversion of the observed
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Figure 10
Diffuse intensity distributions obtained using scaling function [equations
(29) and (30)] for (a) pure random deformation faulting with fault
probability � = 0.1, (b) pure random growth faulting with fault probability
� = 0.1, (c) pure random growth faulting with fault probability � = 0.9, and
(d) mixed faulting with growth fault probability � = 0.1 and deformation
fault probability � = 0.1.



intensity profiles, as proposed by Shreshtha & Pandey (1996)

and Estevez-Rams et al. (2001). From the characteristic length

scale, the fault probabilities may easily be determined using

the expressions given in this work.

6. Conclusions

Using the concept of characteristic length scale (L) for

randomly faulted h.c.p. crystals (Shreshtha & Pandey, 1996),

we have shown that the pair correlation functions for

randomly faulted h.c.p. crystals exhibit scaling property, i.e.

they can be collapsed into master curves when plotted against

the interlayer separation (m) scaled with L. The relationships

between the characteristic length scale and the random growth

and deformation fault probabilities have been obtained. The

functional dependence of L on the fault probabilities is non-

universal, i.e. it is different for different types of stacking

faults. We have also shown that the diffracted intensity

distribution along c� can be expressed in terms of L which can

be determined from the FWHM of the experimentally

observed profiles. Exact relationships between L and FWHM

have also been worked out. As shown elsewhere (Tiwary &

Pandey, 2007), the scaling properties of P(m) are observed

even for non-random faulting in h.c.p. crystals. In fact, the

scaling properties of P(m) hold good for all such faults in any

close-packed structure such as f.c.c., 4H, 6H, 9R etc., provided

the fault type does not retain long-range correlations.
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